
Learning Declarative Bias

Will Bridewell1 and Ljupčo Todorovski1,2

1 Computational Learning Laboratory,
Center for the Study of Language and Information,

Stanford University, Stanford, CA, USA 94305
willb@csli.stanford.edu

2 University of Ljubljana, Faculty of Administration
Gosarjeva 5, SI-1000 Ljubljana, Slovenia

ljupco.todorovski@fu.uni-lj.si

Abstract. In this paper, we introduce an inductive logic programming
approach to learning declarative bias. The target learning task is in-
ductive process modeling, which we briefly review. Next we discuss our
approach to bias induction while emphasizing predicates that character-
ize the knowledge and models associated with the HIPM system. We
then evaluate how the learned bias affects the space of model structures
that HIPM considers and how well it generalizes to other search prob-
lems in the same domain. Results indicate that the bias reduces the
size of the search space without removing the most accurate structures.
In addition, our approach reconstructs known constraints in population
dynamics. We conclude the paper by discussing a generalization of the
technique to learning bias for inductive logic programming and by noting
directions for future work.

Key words: inductive process modeling, meta-learning,
transfer learning

1 Introduction

Research on inductive process modeling [1] emphasizes programs that build mod-
els of dynamic systems. As the name suggests, the models are sets of processes
that relate groups of entities. For example, neighboring wolf and rabbit popula-
tions interact through a predation process, which may take one of many forms.
As input, these programs take observations, which record system behavior over
time, background knowledge, which consists of scientifically meaningful generic
processes, and entities whose behavior should be explained. The output is a
model that comprises processes instantiated with the available entities. A naive
solution to the task would exhaustively search the space of models defined by
the instantiated processes, but this approach produces several nonsensical mod-
els and the search space grows exponentially in the number of instantiations. To
make inductive process modeling manageable in nontrivial domains, one must
introduce bias.

2 Will Bridewell and Ljupčo Todorovski

Recently, researchers developed the notion of a process hierarchy to define
the space of plausible model structures [2]. This solution defines which processes
must always appear in a model, which ones depend on the presence of others,
and which ones mutually exclude each other. Although one can use the hierarchy
to substantially reduce the size of the search space, specifying relationships that
both constrain the space and have validity in the modeled domain is difficult.
Importantly, the introduction of this bias replaces the task of manually building
a model with that of manually defining the space of plausible model structures.
Ideally we would like to automatically discover this knowledge.

Ample literature exists on bias selection [3], which emphasizes search through
the space of learning parameters, and constructive induction [4], which increases
the size of the search space. In contrast, we wish to learn constraints that will
reshape the search space and ensure that the program considers only plausible
and accurate models. In the context of inductive process modeling, the learned
constraints would imply the same restrictions as those encoded in the process
hierarchy. For instance, in the case of the wolves and rabbits, we would like
to discover that an accurate model of the dynamics must include a predation
process. As this example hints, these constraints are generalizations drawn from
the space of models.

To be more specific, we used inductive logic programming to find clauses that
characterize accurate and inaccurate models. The examples are individual mod-
els from the search space that are classified as accurate or inaccurate according to
their fit to training data. As further input, the background knowledge comprises
descriptions of model organization such as predicates that indicate whether a
model includes a particular process and which entities participate in a process.
Given this information, we learn theories whose clauses describe accurate and
inaccurate models, which we then turn into constraints on the model structures.

Before describing our approach in detail, we first provide a high level intro-
duction of inductive process modeling with an emphasis on those aspects used
to learn declarative bias. We then describe our learning algorithm, which relies
on the combination of HIPM [2] and Aleph [5]. Next we describe promising re-
sults on a predator–prey domain and highlight the transfer of learned bias across
multiple data sets. Following the experiments, we explain the general applicabil-
ity of this approach to other artificial intelligence tasks and identify other work
of a similar nature. Finally, we discuss limitations of our current approach and
highlight its effect on inductive process modeling.

2 Inductive Process Modeling

Our program learns bias by analyzing the model structures that HIPM generates
during search. For this reason, we provide a rough description of the knowledge
representations for generic process libraries and quantitative process models.
In the context of this paper, details about the internals of the processes (e.g.,
conditions and equations), the structural and parametric search techniques, and

Learning Declarative Bias 3

Table 1. Part of a library for population dynamics, which includes both generic entities
and processes. A generic process’s type appears in braces after its name. For simplicity,
we suppress each process’s equations, conditions, and numeric parameters.

generic entity predator: generic entity prey:
variables concentration{sum}; variables concentration{sum};

generic process exp growth{growth}: generic process log growth{growth}:
entity E{prey, predator}; entity E{prey, predator};

generic process exp loss{loss}: generic process holling type 1{predation}:
entity E{prey, predator}; entity P{prey}, R{predator};

generic process holling type 2{predation}: generic process holling type 3{predation}:
entity P{prey}, R{predator}; entity P{prey}, R{predator};

the simulation routine are of less importance. We will briefly mention these
aspects, which are described in greater detail elsewhere [1, 2].

At a high level, the background knowledge used by HIPM takes the form
of the process library shown in Table 1. This library defines two generic en-
tities which have properties (i.e., variables and constants). In this case, both
declarations specify a single variable, concentration, with an additive combining
scheme.3 The generic entities fill labeled roles in the generic processes, which are
defined below each process’s name. For instance, exp growth requires an instan-
tiation of the generic entity prey or predator and in its complete form contains
a constant that defines the growth rate and an equation that alters the prey’s
concentration. Notice that this generic process also has type growth, which is
specified in braces after the name. In HIPM, process types define groups of
generic processes that help delimit the search space. For instance, one could re-
quire that all population dynamics models include one of the many predation
processes, letting the program select from these based on the model’s fit to data.

In contrast to libraries, models contain instantiated entities and processes.
For the entities, one must define the properties by specifying the values of con-
stants and by either associating variables with a trajectory or stating their initial
values. As an example, the entity Wolf could instantiate predator and its variable
could refer to weekly recordings of a localized wolf population’s size. Instanti-
ating a process involves specifying the values of local constants and filling each
labeled role with an entity that has the appropriate type. To a degree, and for the
purposes of this paper, one can view generic processes and entities as predicates
and the instantiated versions as ground facts.

Expanding on this logical view, a model is a conjunctive clause that can
predict the quantitative behavior of a dynamic system. To explain a data set,

3 When multiple processes influence a variable, one must aggregate the effects. To this
end, HIPM supports combining schemes that select the minimal or maximal effect,
add the effects, or multiply them.

4 Will Bridewell and Ljupčo Todorovski

Table 2. The logical representation of the population dynamics library from Table 1.

entity(predator). entity(prey).

process(exp growth, growth). process(log growth, growth).
process(exp loss, loss). process(holling type 1, predation).
process(holling type 2, predation). process(holling type 3, predation).

HIPM constructs model structures that satisfy constraints, which are part of
the bias. The program then estimates the numeric parameters of each model
using a gradient search algorithm [6] coupled with random restarts. HIPM relies
on CVODE [7] to simulate the system of equations entailed by the model and
compares the trajectories to measured time-series. To learn bias, our program
employs a more general logical view of the model and couples it with a predicate
that associates the structure with a particular level of accuracy.

3 Learning Bias by Inductive Logic Programming

The primary contribution of this paper is a logical representation that lets one
learn declarative bias by analyzing the space of possible models. We developed
such a formalism for describing both libraries and models associated with in-
ductive process modeling and we present a strategy for applying inductive logic
programming tools. In this section, we describe the formalism, the input to the
learning system, the performance element that uses the learned rules, and the
learning software that we employed.

Model structures contain a number of processes, each of which relates a num-
ber of entities, and each of those may be shared among multiple processes. These
three properties indicate the inherent relational structure of the models and
suggest that a first-order representation would best capture this characteristic.
Indeed, in Section 2 we suggested that the inductive process modeling represen-
tation resembles first-order logic. That is, one could view the names of generic
processes and entities as predicates and instantiations of these as ground facts.
However, this mapping creates a domain-specific language that one must tailor
to other modeling problems. For instance, we would like to use the same predi-
cates for describing knowledge and models from the population dynamics domain
as for those in a physiological one. Therefore, we designed domain-independent
predicates that explicitly characterize the structure of processes and models.

Table 2 contains an encoding of the population dynamics library from Ta-
ble 1. There are only two predicates in this representation: entity and process.
For our program, the only relevant information about a generic entity is its
name. Generic processes differ slightly in that they have both a name, the first
argument, and a type, the second one. Currently we leave the entity roles of
a generic process unspecified because the instantiated processes in each model

Learning Declarative Bias 5

Table 3. The logical representation of a population dynamics model.

model(m1). r2(m1, 0.85).

process instance(m1, p1, exp growth). process instance(m1, p2, exp loss).
parameter(m1, p1, aurelia). parameter(m1, p2, nasutum).

process instance(m1, p3, holling type 1).
parameter(m1, p3, aurelia). entity instance(nasutum, predator).
parameter(m1, p3, nasutum). entity instance(aurelia, prey).

relate entities according to the type specification in the library. A key feature of
this formalization is that it limits the domain-specific information to the process
library and lets us build high-level predicates that generalize to other tasks.

The logical representation for process models resembles that for the library
with the key differences that it ties the components of individual models together
and that it includes information about the process parameters. To illustrate,
consider the model in Table 3. Since the examples are a collection of ground facts,
we need a way to associate processes, parameters, and entities with particular
models. Here, we introduce the predicate model that declares a ground term to
be a model identifier. This term appears in all predicates associated with that
particular model except for entity instance. Since all models explain the behavior
of the same entities, a direct tie between them is unnecessary.

Similarly, we associate parameters with particular processes. For instance,
the model in Table 3 contains a process instance that belongs to model m1, has
the unique identifier p1, and instantiates the generic process exp growth. The use
of the unique identifier lets one relate multiple entities to a single process.

The collection of ground facts from Table 3 defines an organized model struc-
ture that has a particular accuracy. Here we encode this value with the r2 pred-
icate, which records the coefficient of determination calculated over the training
data. This value falls in the range [0, 1] and indicates how well the shape of the
simulated trajectory matches that of the observed values.

Although the predicates for the generic process library and for instanti-
ated models define the structures, they would lead to clauses that are diffi-
cult to interpret. To address this problem, we introduce a set of higher level
predicates that describe the structures in terms of properties. These predicates
combine those from Tables 2 and 3 into forms like those in Table 4. To illus-
trate, the predicate includes processtype entity(m1, p1, aurelia) com-
pactly represents the conjunction process instance(m1, p1, exp growth),

process(exp growth, growth), parameter(m1, p1, aurelia), entity in-

stance(aurelia, prey). We use these higher-level predicates in addition to the
lower-level ones so that one can identify comprehensible rules without losing the
ability to learn unanticipated relationships among model structures.

6 Will Bridewell and Ljupčo Todorovski

Table 4. Examples of high-level predicates that describe the model structure.

includes processtype(M, T) :– includes processtype entity(M, T, E) :–
model(M), process(P, T), model(M), entity(E),
process instance(M, , P). process instance(M, PI, P), process(P, T),

parameter(M, PI, EI), entity instance(EI, E).

Whereas the library definition and high level predicates compose the back-
ground knowledge, the models serve as the examples. To assign the models to
a target class, we use the predicates accurate model and inaccurate model. We
define the rules for these predicates as accurate model(M) :- r2(M, R), R ≥
threshold. and inaccurate model(M) :- r2(M, R), R < threshold.4 We
describe the method for selecting a threshold in Section 4.

Given background knowledge and examples, our approach produces theo-
ries whose clauses characterize the structure of accurate and inaccurate mod-
els. We can use each such clause to bias the search space of candidate model
structures. To this end, the clauses that predict accurate models specify which
structures should remain in the search space, while the clauses for inaccurate
models state ones the automated modeler should prune. To learn these rules, we
apply the inductive logic programming system Aleph, which produces separate
theories for accurate and inaccurate models. For example, Aleph could learn
the clause, accurate model(M) :- includes processtype(M, predation).,
which we would turn into background knowledge for HIPM that forces all models
to contain a process with type predation.

As we have described the task, learning declarative bias seems like a natu-
ral problem for inductive logic programming; however, a propositional approach
would work as well since we are working in a finite domain without recursive
predicates. For instance, given a fixed, finite domain of processes, we could con-
struct a Boolean feature vector for each model that contains all the properties
captured by the background knowledge. This method would effectively involve
a reimplementation of the LINUS system [8], which, as a result, reinforces the
appropriateness of a relational learner for inducing declarative bias. In the next
section, we evaluate our described approach in an ecological domain.

4 Empirical Evaluation

To determine the utility of the approach described in Section 3, we applied it in
the domain of population dynamics. After describing the experimental method,
we detail a strategy for selecting an appropriate threshold value to separate ac-
curate models from inaccurate ones. In the rest of the section, we evaluate three
conjectures about the learned bias. First, we expect the bias will substantially

4 Note that r2 is not a background knowledge predicate for learning bias.

Learning Declarative Bias 7

reduce the search space of candidate model structures. Second, we expect the
reduced search space will retain the most accurate models. And third, we an-
ticipate that the learned model constraints will be consistent with the existing
knowledge in the domain of population dynamics modeling and have a potential
to contribute new findings to it.

4.1 Method

We performed the experiments on three modeling tasks. Each includes modeling
population dynamics from measured time-series of concentrations of two species,
aurelia and nasutum [9], involved in a predator–prey interaction. We ran HIPM
on the three tasks with an initial library that lack constraints on process com-
binations in models. HIPM performed exhaustive search through the space of
9402 model structures that have up to five processes, fit the constant parameters
of each candidate structure against the measured time-series, and reported the
obtained model and its performance (i.e., the coefficient of determination on the
training time-series). We reformulated the traces of HIPM runs in first-order
logic to create three data sets for learning bias: PP1, PP2, and PP3.

For each data set, we must first select the value of the performance threshold
that distinguishes accurate models from the inaccurate ones first. We evaluate
the effect of the threshold value on the recall of the best models in the next
subsection, and based on this analysis, we propose a method for selecting an
optimal threshold for a given data set. Having selected the threshold value for
the training set, we run Aleph to induce bias, and then evaluate its performance
on the remaining two data sets which were unseen during learning.5 We use
Aleph’s default parameter settings, except that we set its noise parameter to 10,
which lets a clause cover up to 10 negative examples, the minpos parameter to
2, which prevents Aleph from adding ground facts to the theory, and the nodes
parameter to 100,000, which increases the upper bound on the program’s search
space complexity.

To validate our conjectures about the induced bias, we use two quantitative
evaluation metrics and qualitative analysis. First, we measure the size of the
search space before and after applying the learned bias. Formally, we calculate
the reduction factor as |SS0|/|SS|, where |SS0| denotes the number of models in
the unconstrained search space and |SS| is the number of model structures in
the biased space. Second, best model recall measures the percentage of the n best
models of a particular data set in the entire search space that also appear in the
reduced space. Ideally, the reduced space would retain 100% of the best models.
In the experiments, we measure recall of the ten and fifty best models. Next, we
compare the distribution of the model performance in the reduced search space
to the distribution of the model performance in the entire space. We expect the
overall performance of models in the reduced search space to compare favorably

5 Since HIPM performs exhaustive search, we do not run HIPM again to search the
constrained space of models. Instead, we remove the model structures that violate
the induced constraints.

8 Will Bridewell and Ljupčo Todorovski

(a) (b)

 0

 5

 10

 15

 20

 25

 30

 35

0.0110.0240.0790.1300.4080.6510.860

re
du

ct
io

n
fa

ct
or

performance threshold value

accurate
inaccurate

 0

 20

 40

 60

 80

 100

0.0110.0240.0790.1300.4080.6510.860

re
ca

ll
ra

te
 (

R
R

-5
0)

 [%
]

performance threshold value

accurate
inaccurate

Fig. 1. Sensitivity analysis of the bias to the performance threshold value as calculated
on training data. The graph on the left-hand side (a) shows the reduction of the search
space, while the one on the right-hand side (b) shows the recall of the best fifty models.
Full and empty circle symbols indicate the performance of the model constraints for
the accurate and inaccurate class, respectively.

to the overall performance of all candidate models. Finally, we present the model
constraints that were learned from all three data sets and analyze them in terms
of their consistency with existing knowledge in the population dynamics domain.

4.2 Selecting a Performance Threshold

Before we select an appropriate performance threshold for classifying a model
as accurate or inaccurate, we analyze its effect on bias performance in terms
of search space reduction and best models recall. To identify a list of plausible
threshold values, we rank the models according to their accuracy and divide
them into 10 bins. Then we select the point of maximal performance change
between two consecutive models in each bin. This leads to an initial list of ten
candidate thresholds, which we revise by removing consecutive points that are
close to each other.

The graph in Figure 1(a) shows that the relation between the performance
threshold and the search space reduction is strictly monotonic. As one would
expect, high threshold values render most of the models inaccurate, which leads
to highly specific model constraints. Using these specific model constraints con-
siderably narrows the search space, which is reflected in the high values of the
reduction factor (over 30). On the other hand, the graph in Figure 1(b) shows
that the bias corresponding to high threshold values is too restrictive and re-
moves most of the best models from the search space. Model constraints induced
with threshold values of 0.860 and 0.651 filter out most of the fifty best models,
while the others include most of the best models. The model constraints for the
class of inaccurate models follow roughly the same pattern.

Note that the analysis performed here is limited to the training data set,
to emphasize the fact that we select the performance threshold on the basis of

Learning Declarative Bias 9

Table 5. Evaluating the utility of the model constraints learned on a train data set
TrainDS (for accurate and inaccurate target predicates) on test data sets TestDS. For
each bias, the table reports the reduction of the search space (RSS) and the recall of
the top ten (BMR-10) and top fifty (BMR-50) models for the test set.

Model Constraints (Bias) Bias Evaluation
TrainDS Class RSS TestDS BMR-10[%] BMR-50[%]

PP1 accurate 11× PP2 100 96
PP3 100 94

PP1 inaccurate 11× PP2 90 88
PP3 90 92

PP2 accurate 16× PP1 100 98
PP3 60 36

PP2 inaccurate 11× PP1 100 98
PP3 90 82

PP3 accurate 10× PP1 100 100
PP2 100 100

PP3 inaccurate 9× PP1 100 100
PP2 100 98

training data only. The bias performance change on the test data sets correlates
highly with the results on the training data and is virtually identical to that
shown in Figure 1(b). This indicates the good generalization performance of the
induced bias, which we further analyze in the next subsection.

In summary, the graphs in Figure 1 clearly render 0.130 and 0.408 as optimal
threshold values, since they both lead to a substantially reduced search spaces
that retain most of the best models. Based on this analysis, we use 0.408 as
threshold for performing further experiments on the PP1 data set. The analysis
of threshold influence on the bias performance on the other two data sets, PP2
and PP3, shows a similar effect.

4.3 Evaluating the Generalization Performance

Once we identify the optimal threshold value for learning bias on a particular
data set, we induce the bias using that threshold, and we analyze its performance
on the other two data sets. Table 5 summarizes the results of the evaluation.
All model constraints, induced on different data sets and for different target
predicates, lead to a reduction factor ranging from 9 to 16. The highest reduction
rate is observed for the bias induced on the PP2 data set for the inaccurate class.

All induced model constraints recall most of the top ten models for all test
data sets, except the ones induced on the PP2 data (inaccurate class) that recall
6 of the top ten models for PP3. The recall of the top fifty models is lower, but
still over 90% for most of the cases, with the exception for the bias induced from
the PP2 data set (82% and 63% recall of the top fifty models for PP3 using inac-

10 Will Bridewell and Ljupčo Todorovski

0.0

0.2

0.4

0.6

0.8

1.0

initial accurate inaccurate

r2

(a)

initial accurate inaccurate

(b)

initial accurate inaccurate

(c)

Fig. 2. Comparing the distributions of the model performance in the initial (uncon-
strained) search space to the performance distributions in the biased spaces induced
from the PP1 data set (accurate and inaccurate class). Graphs (a), (b), and (c) compare
the distributions on the PP1, PP2, and PP3 data sets respectively.

curate and accurate constraints, respectively). The worse overall performance is
observed when applying the bias induced from the accurate models in PP2 data
set, which is the most restrictive bias in terms of the search space reduction.

The graphs in Figure 2 compare the performance distribution for the models
in the initial (unconstrained) search space to the performance distribution in the
search spaces constrained by the bias induced from the PP1 data set. Figure 2(a)
shows that the median r2 in the entire search space is close to 0 denoting that
most of the models perform poorly on the training time-series (recall that the
range of r2 is [0,1]). The learned bias focuses the search to the space of candidate
model structures that perform much better, their median value being 0.89. Note
however, that the bias does not filter out all inaccurate models from the search
space, since the minimal observed performance remains close to 0. The graphs
in Figures 2(b) and 2(c) show that the constraints induced on the PP1 data
set also narrows the search focus on the test data sets, PP2 and PP3. Bias still
shifts the distribution towards models with better performance: from median r2

close to 0 to medians of 0.63 and 0.26, for PP2 and PP3 respectively. However,
the performance distribution for PP2 is blurred towards worse performing mod-
els indicating that the bias induced on the PP1 data set allows a considerable
number of sub-optimal models. Nevertheless, the comparison of the distributions
confirm that the bias learned on PP1 generalizes well to PP2 and PP3. The effect
of the constraints induced from PP2 and PP3 are comparable.

4.4 Semantic Analysis of the Induced Constraints

For each data set Aleph induced a different collection of model constraints.
Yet, eight of these, presented in Table 6, appear in every theory. Since these
constraints provide generalizations that we can match against existing domain
knowledge, we analyze their potential to enrich it.

Learning Declarative Bias 11

Table 6. The eight rules that appear in each of the theories induced from the PP1,
PP2, and PP3 data sets.

accurate model(M) :-

includes processtype entity(M, loss, predator),

includes process entity(M, exp growth, prey),

includes process(M, hassell varley 2).

accurate model(M) :-

includes processtype entity(M, loss, predator),

includes process entity(M, exp growth, prey),

includes process(M, holling type 3).

accurate model(M) :-

includes processtype entity(M, loss, predator),

includes process entity(M, log growth, prey),

includes process(M, hassell varley 2).

accurate model(M) :-

includes processtype entity(M, loss, predator),

includes process entity(M, log growth, prey),

includes process(M, holling type 2).

accurate model(M) :-

includes processtype entity(M, loss, predator),

includes process entity(M, log growth, prey),

includes process(M, holling type 3).

inaccurate model(M) :-

doesnotinclude processtype entity(M, growth, prey).

inaccurate model(M) :-

doesnotinclude processtype entity(M, loss, predator).

inaccurate model(M) :-

doesnotinclude processtype(M, interaction).

Before describing the clauses produced by Aleph, we acknowledge their propo-
sitional nature and stress its superficiality. To illustrate, we point out that the
higher-level predicates mask the relational structure of the rules. For example,
one can rewrite the first rule in Table 6 in terms of the lower-level predicates as

accurate model(M) :-

model(M), entity(predator), process instance(M, PI, P),

process(P, loss), parameter(M, PI, EI),

entity instance(EI, predator), process(exp growth), entity(prey),

process instance(M, PI2, exp growth), parameter(M, PI2, EI2),

entity instance(EI2, prey), process(hassell varley 2),

process instance(M, PI3, hassell varley 2).

12 Will Bridewell and Ljupčo Todorovski

In addition, had we relaxed the limitations on which entity types could bind to
particular processes (e.g., by letting entities having type predator bind to growth

processes and those having type prey bind to loss processes), rules such as

inaccurate model(M) :- includes processtype entity(M, growth, ET),

includes processtype entity(M, loss, ET).

would likely appear.
Turning now to the semantic analysis of the rules, we see that five of the

frequent clauses shown in Table 6 characterize accurate models. The first two
specify that the structure of an accurate predator–prey model includes three
processes: loss of the predator, exponential growth of the prey, and one interac-
tion process, which may be one of the two specific formulations. The three other
clauses that characterize accurate models are similar, since they also claim that
an accurate models include three processes of loss, growth, and interaction. The
difference from the first two rules is that they specify alternative form of the
growth process (logistic instead of exponential) and a larger set of interactions.

Finally, the three model constraints for the inaccurate model predicate para-
phrase the rules for the class of accurate models, but they are more general.
They identify the three main properties of an inaccurate model’s structure: the
lack of prey species growth, the lack of predator loss, and the lack of interaction
between species. In other words, an accurate model structure should include at
least one process of each type, which is a rediscovery of the well known fact
established in early work by Lotka and Volterra [10]. On the other hand, the five
rules for the accurate models establish novel hypotheses about predator–prey
interaction between the observed species, which ecologists may further evaluate.

We consider the reconstruction of well-known facts from the domain of pop-
ulation dynamics as important evidence about our program’s potential to learn
useful and meaningful bias constraints. This result also improves the credibility
of the hypotheses established by the other model constraints.

5 General Discussion

Although initial results suggest the feasibility of our approach to inducing bias,
many questions remain. In this section, we describe related work and explore
the generality and limitations of our method.

In the introduction, we differentiated our work from bias selection and con-
structive induction, but there are other similar approaches that we should dis-
cuss. In particular, our research falls within the general category of metalearning
[11], but much of this work emphasizes the prediction of algorithm performance,
whereas we use the output of learning to reshape the search space for an algo-
rithm’s future applications. Instead, our work more closely matches that of Mc-
Creath and Sharma [12] who used inductive logic programming to learn mode
and type declarations, which could constrain the space of candidate clauses. No-
tably, their program produced syntactic constraints unrelated to the specific do-
main, whereas our approach induces semantic ones that are interpretable within

Learning Declarative Bias 13

the domain’s context. Additionally, we note similarities with learning control
rules for planning [13] since the algorithms analyze the output of the planner
to improve future performance. However, such systems generally view only the
operators and the context of their application as opposed to an entire plan.

The predicates with which we characterize model structures resemble the
relational clichés introduced by Silverstein and Pazzani [14]. Relational clichés
are conjunctions of predicates that are useful for building classification rules in a
particular domain. As such they relate to a combination of processes that must
appear in an accurate model. While our approach learns these combinations (i.e.,
clichés) from examples of inaccurate and accurate models, the work presented
in [14] does not deal with learning clichés but rather demonstrates the benefit
of using them as declarative bias for learning classification rules. More recently,
Morin and Matwin [15] proposed an approach to inducing relational clichés, but
instead of using the meta-learning approach presented here, they learn clichés
directly from the examples in one domain and then transfer them into another
domain. Their work focuses on learning and transfer of bias between domains
and not on learning constraint rules that would contribute to the theory in the
domain of interest. On the other hand, transferring induced knowledge to other
domains is an open challenge for our approach.

Even though we showed how to learn bias in the limited context of induc-
tive process modeling, we expect that it will generalize to other domains. For
instance, in the case of inductive logic programming, one would examine each
evaluated clause as a separate entity and identify a bias that restricts the struc-
ture of the antecedents. This usage would require the learning program to report
the performance of all considered clauses instead of just those in the final theory,
but such an extension requires minimal effort with the potential for substantial
gains in both the effectiveness of the search and the plausibility of the induced
theories. Extensions to propositional and association rule learning are similar.

Apart from generalization to other artificial intelligence tasks, there are sev-
eral open avenues for future work. First, in this paper, we assume that exhaustive
search of the model space is possible. Such scenarios are uncommon, and we need
to better understand the effects of model sampling on the induction of bias. Sec-
ond, we would like to use a similar approach to analyze the best performing
models in a domain. This task requires an inductive logic programming system
that learns from positive examples only [16] and raises questions about what to
include in the set of best models. Third, Reid [17] introduces the idea of learning
an evaluation bias, which lets one infer the reliability of a logical rule from its
past performance in related tasks. In the spirit of his research, we would like to
estimate the quantitative fit of a model structure based upon its performance
in similar domains. This step would let a program establish priorities over a set
of candidate structures so that “better” ones would have earlier access to the
computationally expensive parameter-estimation routine. Finally, Pazzani and
Kibler [18] show that biasing the space of candidate models with domain-specific
knowledge helps reduce overfitting and improves overall accuracy on a test set.

14 Will Bridewell and Ljupčo Todorovski

We need to evaluate whether this holds true when the bias is automatically
induced.

6 Conclusion

In this paper, we developed a representation that lets one learn declarative bias
for inductive process modeling using tool provided for inductive logic program-
ming. Our primary contribution is that we showed how to construct the back-
ground knowledge, how to describe the examples, and how to select a threshold
for the supervised learning task. We then evaluated our approach on a popu-
lation dynamics domain and found that the learned bias substantially reduced
the size of the candidate model structure space. We also found that the bias
increased the proportion of accurate models in both the training data and test
data taken from the same domain. Importantly many of the induced constraints
verified known ecological theory. Finally, we described related work, proposed
the generalization of this method to other learning algorithms, and highlighted
future work that will lead to a better understanding of this research area. We
believe that the reported approach opens a promising new avenue for scientists
in artificial intelligence that is rich with open questions.

Acknowledgments. This research was supported by Grant No. IIS-0326059
from the National Science Foundation. We thank Pat Langley, Stuart Borrett,
and Tolga Könik for discussions that influenced the ideas in this paper.

References

1. Langley, P., Sánchez, J., Todorovski, L., Džeroski, S.: Inducing process models
from continuous data. In: Proceedings of the Nineteenth International Conference
on Machine Learning, Sydney, Morgan Kaufmann (2002) 347–354

2. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.: Inducing hierarchical process
models in dynamic domains. In: Proceedings of the Twentieth National Conference
on Artificial Intelligence, Pittsburgh, PA, AAAI Press (2005) 892–897

3. Provost, F., Buchanan, B.: Inductive policy: The pragmatics of bias selection.
Machine Learning 20 (1995) 35–61

4. Utgoff, P.E.: Machine Learning of Inductive Bias. Kluwer Academic Publishers,
Boston, MA (1986)

5. Srinivasan, A.: The Aleph Manual. Computing Laboratory, Oxford University.
(2000)

6. Bunch, D.S., Gay, D.M., Welsch, R.E.: Algorithm 717: Subroutines for maximum
likelihood and quasi-likelihood estimation of parameters in nonlinear regression
models. ACM Transactions on Mathematical Software 19 (1993) 109–130

7. Cohen, S., Hindmarsh, A.: CVODE, a stiff/nonstiff ODE solver in C. Computers
in Physics 10 (1996) 138–143

8. Lavrac, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, New York (1994)

Learning Declarative Bias 15

9. Jost, C., Ellner, S.: Testing for predator dependence in predator–prey dynamics: A
non-parametric approach. Proceedings of the Royal Society of London B 267(1453)
(2000) 1611–1620

10. Kingsland, S.E.: Modeling Nature. Second edn. The University of Chicago Press,
Chicago, IL (1995)

11. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on
meta-learning. Machine Learning 54 (2004) 187–193

12. McCreath, E., Sharma, A.: Extraction of meta-knowledge to restrict the hypothesis
space for ILP systems. In: Proceedings of the Eighth Australian Joint Conference
on Artificial Intelligence, Canberra, Australia, World Scientific Publishers (1995)
75–82

13. Huang, Y., Selman, B., Kautz, H.A.: Learning declarative control rules for
constraint-based planning. In: Proceedings of the Seventeenth International Con-
ference on Machine Learning, Stanford, CA, Morgan Kaufmann (2000) 415–422

14. Silverstein, G., Pazzani, M.J.: Relational clichés: Constraining constructive in-
duction during relational learning. In: Proceedings of the Eighth International
Workshop on Machine Learning, Morgan Kaufmann (1991) 203–207

15. Morin, J., Matwin, S.: Relational learning with transfer of knowledge between
domains. In: Proceedings of the Thirteenth Biennial Conference of the Canadian
Society for Computational Studies of Intelligence, Springer (2000) 379–388

16. Muggleton, S.: Learning from positive data. In: Proceedings of the Sixth Interna-
tional Workshop on Inductive Logic Programming, Stockholm, Sweden, Springer
(1996) 358–376

17. Reid, M.: DEFT guessing: Using inductive transfer to improve rule evaluation
from limited data. Ph.D. thesis, University of New South Wales, Sydney, Australia
(2007)

18. Pazzani, M.J., Kibler, D.F.: The utility of knowledge in inductive learning. Machine
Learning 9 (1992) 57–94

