
An Adaptive Architecture for Physical Agents

Pat Langley
Computational Learning Laboratory

Center for the Study of Language and Information
Stanford University, Stanford, CA 94305 USA

Abstract

In this paper we describe ICARUS, an adaptive architecture
for intelligent physical agents. We contrast the framework’s
assumptions with those of earlier architectures, taking ex-
amples from an in-city driving task to illustrate our points.
Key differences include primacy of perception and action
over problem solving, separate memories for categories and
skills, a hierarchical organization on both memories, strong
correspondence between long-term and short-term struc-
tures, and cumulative learning of skill hierarchies. We sup-
port claims for ICARUS’ generality by reporting our expe-
rience with driving and three other domains. In closing, we
discuss limitations of the current architecture and propose
extensions that would remedy them.

1. Introduction and Motivation

Research on intelligent agents cannot progress beyond a
certain level without addressing issues of system integra-
tion. Developing improved component mechanisms has its
place, but it cannot lead to full understanding unless we ex-
plore ways these components interact to produce intelligent
behavior. System integration requires some commitment
to an architecture that specifies key modules and interac-
tions among them. Some architectural frameworks, such
as those for multi-agent systems, indicate communication
protocols among components but make few other commit-
ments. In contrast, a cognitive architecture (Newell, 1990)
places constraints on the components themselves that em-
body theoretical claims about the nature of intelligence. Our
research on intelligent agents falls within this paradigm.

A cognitive architecture specifies the infrastructure for
an intelligent system that remains constant across different
domains and knowledge bases. This infrastructure includes
a commitment to formalisms for representing knowledge,
memories for storing the domain content, performance pro-
cesses that utilize this knowledge, and learning mechanisms
that acquire it. Research on cognitive architectures aims to

support the same broad capabilities as humans exhibit, and
usually attempts to remain at least qualitatively consistent
with established psychological findings. Moreover, a cog-
nitive architecture typically comes with some programming
language that reflects its theoretical assumptions and that
one can use to construct intelligent systems.

In this paper we describe ICARUS, a cognitive architec-
ture that builds on previous work in this area but that in-
troduces some novel features. The best method for evaluat-
ing an architecture remains an open question, but it seems
clear that this should happen at the systems level rather than
in terms of isolated phenomena. We will not claim that
ICARUS is superior to other candidates along any particu-
lar dimension, but we will argue that it addresses facets of
intelligent behavior, and the ways they fit together, that have
been downplayed by other researchers on the topic.

We discuss the distinguishing features of ICARUS in the
section that follows, but we should first note that most have
resulted from our focus on physical agents. We can clar-
ify this concern with an example domain – in-city driving –
that involves cognition but in which perception and action
also play central roles. In particular, consider the task of a
driver who must deliver packages to indicated addresses in
an unfamiliar area. The driver must attempt to achieve his
multiple delivery goals, which themselves involve a combi-
nation of perception, action, and reasoning, while obeying
the rules of driving and avoiding collisions with other cars.

To support our research on such complex tasks, we have
implemented a simulated environment for in-city driving
that simplifies many aspects but remains rich and challeng-
ing. Objects take the form of rectangular parallelepipeds
that sit on a Euclidean plane. These include vehicles, for
which the positions, orientations, and velocities change over
time, as well as static objects like road segments, intersec-
tions, lane lines, sidewalks, and buildings. Each vehicle can
alter its velocity and change its steering wheel angle by set-
ting control variables, which interact with realistic laws to
determine each vehicle’s state. The physics for collisions is
simplified, with vehicles exchanging momentum along their
lengthwise axes.



Most vehicles are drones controlled by the simulator, but
one vehicle is driven by an ICARUS agent, which has ac-
cess to the same effectors and can only sense objects closer
than 60 feet. The system perceives other vehicles (with no
occlusion) and buildings, both described in agent-centered
polar coordinates that give the object’s distance, angle, rel-
ative velocity, and orientation. The ICARUS agent also per-
ceives its distance and angle with respect to lane lines, and
some of its own properties, like speed and steering wheel
angle. To support the delivery task, the agent can perceive
the street, address, and cross street for each package it car-
ries, along with the current street name, the upcoming cross
street, and the address associated with visible buildings. We
also provide the system with top-level goals to deliver these
packages to their destinations.

Despite the idealized nature of this environment, it forces
us to take seriously the goal of integrating cognition with
perception and action in ways that provide the same breadth
and richness observed in human behavior. Thus, we will
use this task domain as a running example throughout our
discussion of ICARUS’ features in the next section. How-
ever, generality is an important criterion for a successful
agent architecture, so we follow this with a summary of re-
sults both on driving and on three quite different domains.
We conclude with comments on ICARUS’ relation to other
frameworks and some proposals for future research.

2. Distinctive Characteristics of ICARUS

Our framework shares many features with previous cog-
nitive architectures, such as Soar (Laird et al., 1987),
ACT-R (Anderson, 1993), and PRODIGY (Minton, 1990).
These include a commitment to symbolic representation of
knowledge, utilization of pattern matching to select rele-
vant knowledge elements, organization of performance into
a recognize-act cycle, and an incremental approach to learn-
ing. However, ICARUS also has some distinctive character-
istics, which we contrast here with the assumptions in these
more established frameworks.

2.1. Primacy of Perception and Action

Most cognitive architectures draw heavily on results from
the study of human problem solving. This influence is per-
haps most apparent in Soar, which incorporates Newell’s
(1980) problem space hypothesis. This states that all cog-
nitive behavior can be cast as search through a problem
space which involves selection of operators to apply and
states to expand. PRODIGY makes a more specific commit-
ment to means-ends analysis as its problem-solving mech-
anism. ACT-R does not take as strong a position on this
issue, but most models in that framework emphasize cogni-
tive over sensory-motor activities, following the paradigm

set by Newell and Simon (1972) in their early models of
human problem solving. Recent versions of ACT-R and
Soar have been augmented with sensory and motor mod-
ules, whereas Kieras and Meyer’s (1997) EPIC emphasizes
peripheral processes, but most cognitive architectures were
designed with mental processing in mind.

In contrast, ICARUS is concerned centrally with intelli-
gent agents that exist in a physical environment. Our work
to date has used only simulated worlds, but they are sep-
arate and distinct from the cognitive systems, which must
perceive it through sensors and influence it through effec-
tors. At the same time, we do not reject theories of hu-
man problem solving, as they reflect important phenomena
that deserve explanation. However, we hold that problem-
solving activities are not primitive but rather are built on top
of, and integrated with, more primitive activities for percep-
tion and action. Indeed, our philosophy is that one should
never write an ICARUS program that does not operate in
some physical setting, so that the framework is relevant only
for embodied agents.

Perhaps the most basic assumption of traditional theories
is that cognition involves the mental inspection and manip-
ulation of list structures. Newell and Simon (1976) later
refined this into their physical symbol system hypothesis,
which states that symbolic processing is a necessary and
sufficient condition for intelligent behavior. ICARUS makes
the stronger claim that mental states are always grounded
in real or imagined physical states, and that problem-space
operators always expand to primitive skills with executable
actions. We refer to this position as the symbolic physical
system hypothesis, which comes closer to Johnson-Laird’s
(1989) views on thinking with mental models.

As noted earlier, our ICARUS agent for the in-city driv-
ing environment perceives a variety of object types, each
described as numeric attributes in agent-centered polar co-
ordinates. The system can influence its situation through
effectors that alter speed, turn the steering wheel, and de-
posit a package at the current location. Our typical runs
involve a city with nine or more square blocks, with at least
five buildings on each side of each block, which provides
a reasonably complex environment. The resulting system
exhibits much the same mixture of perception, inference,
problem solving, decision making, and action that humans
demonstrate when driving.

2.2. Separation of Categories from Skills

Another common feature of cognitive architectures is a
commitment to representations for long-term knowledge.
This often takes the form of production rules, which spec-
ify the conditions under which they will match and the ac-
tions they will carry out upon execution. Production sys-
tems have been quite successful in modeling many aspects

2



Table 1. Some ICARUS concepts for in-city driving,
with variables indicated by question marks.

(parked (?self ?lane)
:percepts ((self ?self speed ?speed))
:positives ((in-rightmost-lane ?self ?lane)

(stopped ?self)))

(in-rightmost-lane (?self ?lane)
:percepts ((self ?self)

(lane-line ?lane))
:positives ((in-lane ?self ?lane))
:negatives ((lane-to-right ?lane ?anylane)))

(in-lane (?self ?lane)
:percepts ((self ?self segment ?sg)

(lane-line ?lane segment ?sg dist ?d))
:tests ((> ?d -10) (<= ?d 0)))

of human cognition, but they borrow key ideas from behav-
iorist psychology and retain a strong action-oriented flavor,
although the actions are primarily mental. Even in ACT-R,
which distinguishes between a procedural rule memory and
a declarative memory of facts, the latter serves primarily as
a source of elements for short-term memory.

However, cognition involves more than execution of
mental procedures; it also includes the recognition of cat-
egories and drawing of associated inferences. One can cer-
tainly model categorization using production systems (e.g.,
Miller & Laird, 1996), but we believe that concepts serve
a different function than procedures and that they are best
handled with separate representations and mechanisms. We
should note that many researchers seem to agree; except
for those who start from such a position, few computational
models of categorization are cast as production systems.

In response, ICARUS incorporates two separate long-
term stores. First, a conceptual memory contains Boolean
concepts that encode its knowledge about general classes
of objects and relations among them. Each concept def-
inition includes a head, which specifies the name and ar-
guments, and a body, which includes a :percepts field that
describes observed perceptual entities, a :positives field that
states lower-level concepts it must match, a :negatives field
that gives concepts it must not match, and a :tests field that
specifies numeric relations it must satisfy. Table 1 shows
some concepts from the driving domain.

A second long-term skill memory encodes knowledge
about ways to act and achieve goals. Each skill has a head,
which gives a name and arguments, and a body with a va-
riety of fields. For primitive skills, these will include an
:effects field that specifies concepts the skill is intended to
achieve, a :start field that describes the situation in which
one can initiate the skill, a :requires field that must hold
throughout the skill’s execution, and an :actions field that
indicates executable actions the skill should invoke. For

Table 2. Nonprimitive and primitive ICARUS skills
for in-city driving.

(driving-in-segment (?self ?sg ?lane)
:percepts ((lane-line ?lane)

(segment ?sg)
(self ?self))

:start ((steering-wheel-straight ?self))
:skills ((in-lane ?self ?lane)

(centered-in-lane ?self ?sg ?lane)
(aligned-lane-in-seg ?self ?sg ?lane)
(steering-wheel-straight ?self))

(steering-wheel-straight (?self)
:percepts ((self ?self))
:start ((steering-wheel-not-straight ?self))
:actions ((*straighten))
:effects ((steering-wheel-straight ?self)))

example, Table 2 shows the skill steering-wheel-straight,
which has the effect of making the steering-wheel-straight
concept true and is considered only when steering-wheel-
not-straight holds.

In contrast, nonprimitive skills have no :actions field,
since they instead have a :skills field that specifies a set of
subskills the agent should execute and the order in which
they should occur. Such higher-level skills also have a :start
field, but they lack a :requires field, which is handled by
their primitive subskills, and an :effects field, which is en-
coded by the literals in their heads. Table 2 shows the non-
primitive skill driving-in-segment, which refers to the con-
cept steering-wheel-straight in its :start field and has four or-
dered subskills. The driving domain lends credibility to the
architectural distinction between concepts and skills, which
the ICARUS interpreter treats in quite different manners, as
we will see shortly.

2.3. Long-Term / Short-Term Correspondence

An agent architecture requires more than long-term mem-
ory; it must also have short-term memories that contain dy-
namic beliefs and intentions. A recurring idea in cognitive
science is that a short-term store should simply be the ‘ac-
tive’ portion of some long-term memory. This relation holds
for the declarative memories in ACT-R, but not for its pro-
cedural production rules, which are purely long term, and
Soar does not support such a mapping in any obvious form.
Theories of case-based reasoning come much closer to this
theme, but these have seldom been cast as general cognitive
architectures.

ICARUS enforces a strong correspondence by requiring
that every short-term element be a specific instance of some
long-term structure. In particular, its short-term conceptual
memory contains instances of defined concepts which en-
code specific beliefs about the environment that the agent

3



can infer from its perceptions.1 For instance, this memory
might contain the instance (in-lane self g0037), which it can
infer from the in-lane concept shown in Table 1. Concept
instances also appear in a separate short-term goal memory,
which contains literals that the agent wants to achieve. For
example, (parked self g0019) would indicate the agent’s de-
sire to be parked in lane g0019. In fact, ICARUS cannot
encode a goal without a corresponding long-term concept.

The architecture also incorporates a short-term skill
memory, which contains instances of skills the agent in-
tends to execute. Each of these literals specifies the skill’s
name and its concrete arguments, which must be known ob-
jects. For example, this memory might contain the skill
instance (driving-in-segment self g0011 g0019), which de-
notes that the driver has an explicit intention to execute the
driving-in-segment skill with these arguments. Every short-
term element must be either a concept instance (belief or
goal) or a skill instance (intention), which places strong
constraints on the structures ICARUS can process.

2.4. Hierarchical Structure of Memory

Another distinguishing feature of ICARUS lies in its com-
mitment to the hierarchical nature of long-term memory.
There remains little doubt that human memory has this char-
acter. Many natural categories have a componential struc-
ture, and timing studies suggest that chunk boundaries re-
main even in well-practiced procedures. Most cognitive ar-
chitectures can model such hierarchical relations, but few
raise this notion to a design principle. ACT-R comes the
closest by letting productions link goals to subgoals, but
the relation remains mediated by working memory elements
rather than referring directly to component structures.

ICARUS provides direct support for hierarchy at the ar-
chitectural level. Recall that the fields in a concept defi-
nition can refer to other concepts, and thus organize cate-
gories into a conceptual lattice, with primitive concepts at
the bottom and increasingly complex concepts at higher lev-
els. For example, the concept parked in Table 1 is defined
using in-rightmost-lane, which relies on in-lane. Similarly,
each nonprimitive skill includes a field that specifies how it
decomposes into subskills, ultimately terminating in prim-
itive skills that play the same role as STRIPS operators in
AI planning systems. Moreover, skills refer to concepts
in other fields, thus linking the two memories in a hierar-
chical manner. For example, steering-wheel-straight in Ta-
ble 2 appears in the :skills field of driving-in-segment and
refers to various concepts in its :start and :effects fields. In
both memories, higher-level structures refer directly to their
components by name, giving more direct indexing than in
production system architectures.

1This correspondence does not hold for ICARUS’ perceptual buffer,
which stores the agent’s momentary perceptions.

This hierarchical organization plays a central role in
ICARUS’ performance mechanisms. On each cycle, the ar-
chitecture matches available concepts in a bottom-up man-
ner to infer high-level beliefs from its immediate percep-
tions. Once this process has completed, skill selection oc-
curs in a top-down manner that draws on these beliefs. The
skill hierarchy defines an AND-OR tree down which the in-
terpreter traverses on each cycle, starting from top-level in-
tentions in short-term skill memory and terminating in exe-
cutable actions. Most paths are rejected because their :start
or :requires fields are unsatisfied or because their heads or
:effects already hold.

However, many paths may remain available as alterna-
tives. ICARUS draws on two preferences that offer a balance
between reactivity and persistence. First, given a choice be-
tween two or more subskills along a path through the hi-
erarchy, it selects the first one for which the corresponding
effects are not satisfied. This bias encourages reactive con-
trol, since the agent reconsiders previously completed sub-
skills on each cycle and, if other factors have undone their
effects, executes them again. Second, given a choice be-
tween two or more applicable skill paths, the architecture
selects the one that shares the most elements from the start
of the path executed on the previous cycle. This bias en-
courages the agent to continue executing a high-level skill
until it achieves the associated effects or becomes inappli-
cable. ICARUS’ skill selection process plays the same role
as conflict resolution in production systems, but factors hi-
erarchical structure into its decisions.

2.5. Cumulative Nature of Learning

Learning has played a central role in the cognitive architec-
ture movement, with Soar, ACT-R, and PRODIGY all giving
serious attention to the issue. Each of these frameworks
supports the creation of new cognitive structures, specifi-
cally production rules, based on the results of multi-step
problem solving. Moreover, each of their mechanisms is
incremental in the sense of learning from single experi-
ences, which is both consistent with our knowledge of hu-
man learning and desirable for synthetic agents that oper-
ate over time. All have demonstrated transfer, either across
problems or within individual tasks, that produces more ef-
fective cognitive behavior than without learning. However,
the mechanisms they propose offer no explanation for the
origin of hierarchical skills or the cumulative nature of hu-
man learning, which builds more complex structures on top
of those acquired earlier.

ICARUS’ approach to learning shares important features
with other architectures, such as being intertwined with
problem solving and driven by impasses. When the exe-
cution module cannot find an applicable skill path that is
relevant to the current goal, it invokes means-ends analysis
to resolve the impasse. This involves backward chaining off

4



skills that would achieve the goal or, if none are known, off
literals in the goal concept’s definition. Such choices are
pushed onto a goal stack that specifies subgoals and skills
that will achieve them, which are then executed if applica-
ble or which produce further chaining if not. If the problem
solver reaches a dead end or the stack grows too deep, it
backtracks and tries other options, carrying out a depth-first
search through the problem space.

Because means-ends analysis decomposes problems into
subproblems and because the problem solver can uti-
lize knowledge produced from previous tasks, skills that
ICARUS learns for lower-level tasks are available for incor-
poration into skills it acquires for higher-level ones. This
ability supports cumulative learning in that new structures
can refer directly to those acquired from earlier experience.
Nor does the architecture require sophisticated analysis to
determine skills’ contents. Rather, the head of a new skill is
just the subgoal that led to the impasse and its subskills sim-
ply refer to the ordered subgoals achieved in its solution. If
the solution involved chaining off a skill, the new structure’s
start conditions are the conditions of the first subskill; if it
involved chaining off a concept, they are the subconcepts
satisfied at the outset. This simple scheme lets ICARUS

learn hierarchical and even recursive skills from the traces
of successful problem solving in a cumulative manner.

3. Experiences with the Architecture

We believe that our design for ICARUS is internally consis-
tent and well suited for physical agents, but whether it sup-
ports embodied intelligent behavior is an empirical ques-
tion. To obtain evidence to this effect, we have used the ar-
chitecture to develop agents for a number of domains, four
of which we discuss here. Our aim has not been to produce
the most robust agent possible in each domain, which might
be accomplished better with specialized programs, but to
demonstrate ICARUS’ general ability to support reasonable
behavior across a range of environments. We have reported
details of these studies elsewhere (Choi et al., 2004; Choi &
Langley, in press; Langley et al., 2004).

3.1. In-City Driving

We described package delivery task earlier, but we should
we report our experience with the ICARUS agent we have
developed for it. The system includes 15 primitive con-
cepts and 55 higher-level concepts, which range from one
to six levels deep. These are grounded in perceptual de-
scriptions for buildings, road segments, intersections, lane
lines, packages, other vehicles, and the agent’s vehicle. The
model also incorporates eight primitive skills and 33 higher-
level skills, organized in a hierarchy that is five levels deep.
These terminate in executable actions for changing speed,
altering the wheel angle, and depositing packages.

We have run the program on different instances of the
package delivery task, most involving a city with nine
square blocks, a few other vehicles, and multiple packages
with different target addresses. The agent reliably drives
within a lane, slows for intersections, gets into the proper
lane before making turns, and completes them successfully.
The system slows to avoid collision when it comes behind
a slower vehicle. If the agent comes upon the cross street
marked on a package, it turns and continues until it can turn
onto the target street or until it reaches the end, when it
makes a U turn. Once on the target street, the agent contin-
ues if numbers are changing in the right direction or makes
a U turn otherwise. Upon reaching a package’s address, it
deposits the item and drives on so it can deliver the others.

We have also demonstrated cumulative learning on a
subset of these driving skills. In these runs, we provided
the architecture with eight primitive skills for changing the
vehicle’s speed and wheel angle, along with 19 relevant
concepts. We presented the system with the task of driving
straight in a lane, which requires altering the wheel angle.
In response, the architecture invokes means-ends analysis
to construct a solution, which it executes and stores as a
new skill. We then posed the more complex task of chang-
ing lanes, which again requires problem solving. However,
the agent utilizes its previously learned skill to simplify the
task, leading it to create another skill that incorporates it as a
subskill. Finally, we asked the agent to park in the rightmost
lane, which involved further problem solving and learning.
When given analogous tasks later, the agent simply retrieves
and executes these skills without need for problem solving.

3.2. Multi-Column Subtraction

A routine but complex task that has received attention by
cognitive scientists is multi-column subtraction. This do-
main is less dynamic than in-city driving but represents an-
other important class of abilities that an intelligent system
should demonstrate. To reproduce behavior in this domain,
we developed an environment in which the perceivable ob-
jects correspond to digits that have an x position, y position,
a numeric value, and a status (clear or crossed out). Exe-
cutable actions include writing down a new digit, crossing
out a digit, and replacing one value with another.

We have manually developed an ICARUS program that
includes concepts for grouping digits into columns, rec-
ognizing row adjacencies, and noting when columns have
been processed. There are primitive skills for taking a dif-
ference, adding ten, and decrementing by one, along with
two hierarchical skills, one for the top-level task and a sec-
ond for borrowing. The latter has one clause for simple
borrowing and another for borrowing across zero, which in-
vokes itself recursively. The system has a similar flavor to
VanLehn’s (1990) treatment of multi-columnn subtraction,
which also has a hierarchical organization.

5



The ICARUS program solves arbitrary subtraction prob-
lems in the standard manner. The agent calculates answers
to the columns in a right-to-left fashion, borrowing from
the adjacent or more distant columns as necessary, and
writes the answers it obtains in the third row. We have
not yet demonstrated learning on this domain because the
goal requires that one enter a digit for each column; this
involves universal quantification, which the problem solver
and learning mechanism do not yet support. However, we
intend to extend both modules along these lines in future
versions, which should let them acquire hierarchical skills
for this task.

3.3. The Blocks World

The Blocks World is a classical AI planning domain that in-
volves a table, a set of blocks, and a gripper. Any number
of blocks may sit on the table, but only one block may sit
on another. Actions include lifting a block from the table
or another block and placing a block on the table or another
block. For this domain, we provided ICARUS with nine con-
cepts and four primitive skills, along with one concept for
each of four distinct goals. Unlike multi-column subtrac-
tion, the Blocks World allows not only different initial states
but also distinct goal configurations.

We utilized this domain primarily to evaluate ICARUS’
modules for problem solving and learning. The primitive
skills are sufficient, given enough computational resources,
to solve any task, but means-ends analysis requires exten-
sive effort when there are more than a few blocks. Thus,
we presented the system with ten problems each with three,
four, five, and six blocks, which are easy enough for the
problem solver to handle. The learning mechanism pro-
duces 18 new skills from the solution traces, including some
with recursive calls. We then turned learning off and tested
the agent on 30-block problems, nearly all of which it han-
dles with little effort. In this domain, ICARUS’ learning
mechanism provides excellent generalization to tasks with
many more objects than ones on which it is trained.

3.4. FreeCell Solitaire

FreeCell is a solitaire game that involves stacks of cards
on eight columns, all faced up and visible to the player.
Four free cells are available as temporary holding spots for
one card at a time, and four foundation cells correspond
to four different suits. The goal is to move all cards from
the eight columns to the foundation cells in ascending order
and grouped by suit. Only cards that are positioned on top
of each column’s stack and those in free cells can be moved;
these can be shifted to a free cell, to the proper foundation
column, or to an empty column. We again devised a simu-
lator that lets the agent make legal moves and perceive the
status of cards and cells.

For this domain, we did not provide the agent with any
high-level skills, but we gave it 24 concepts and 12 prim-
itive skills that are sufficient, in principle, to handle any
solvable configurations. However, with this knowledge the
agent could handle only simple problems that involved a
few cards or started near the goal state, so we again trained
it in a cumulative manner. For example, after being trained
on FreeCell problems with 8 and 12 cards, the learned recur-
sive skills are sufficient to handle most 16 and 20 card tasks
using only reactive control. Also, because ICARUS allo-
cates limited resources to problem solving, training on sim-
pler tasks greatly increases the chance of success on more
complex problems.

4. Related and Future Work

We argued earlier that ICARUS incorporates a number of
features that distinguish it from traditional cognitive archi-
tectures. However, this does not mean related ideas have
not appeared elsewhere under different guises. For in-
stance, our approach has much in common with the ‘reac-
tive planning’ movement, which often utilizes hierarchical
procedures that combine cognition, perception, and action
in physical domains. Examples include Georgeoff et al.’s
(1985) PRS, Nilsson’s (1994) teleoreactive framework, and
Freed’s (1998) APEX architecture. These lack the abil-
ity to generate novel plans by composing skills, but Albus
and Meystel’s (2001) RCS, Howe’s (1995) PHOENIX, and
Bonasso et al.’s (1997) 3T architectures combine planning
with reactive control in complex environments. However,
they do not transform the resulting plans into generalized
reactive skills,2 as does ICARUS.

Our framework also shares some assumptions with BDI
architectures (e.g., Rao & Georgeff, 1992), which give cen-
tral roles to beliefs, desires, and intentions. We can view
the contents of ICARUS short-term conceptual memory as
its beliefs, the agent’s goals as desires, and the elements in
short-term skill memory that it attaches to those goals as
intentions. Some key differences are ICARUS’ incorpora-
tion of ideas from cognitive science and its utilization of
impasse-driven problem solving to learn new skills, both of
which are associated with the cognitive architecture move-
ment. Thus, one can view our approach as unifying theoret-
ical concepts from these two distinct traditions.

Another close relative to ICARUS is the PRODIGY archi-
tecture (Minton, 1990), which draws on means-ends anal-
ysis to solve problems and uses an analytical method to
learn either search-control rules or macro-operators from
planning traces. This framework does not support reactive
execution or commit to physical agents, but its approach

2Sun et al.’s (2001) CLARION architecture also acquires reactive con-
trol knowledge, but draws on a quite different approach that combines re-
inforcement learning with rule induction.

6



to problem solving and learning have many common fea-
tures with our own. This holds especially for an extension
(Veloso & Carbonell, 1993) that records problem-solving
traces and solves new problems by derivational analogy
with earlier ones, which does not produce generalized skills
but which can exhibit effects similar to those produced by
cumulative learning in ICARUS.

Despite its novel characteristics, as an agent architecture
the current version of ICARUS falls short on a number of
fronts. One drawback is the assumption of unlimited per-
ceptual resources, which lets an agent sense each attribute
of every object within its field of view. Clearly, humans
have more limited capabilities, in that they must focus atten-
tion on an object to extract its features. We plan to treat per-
ceptual attention as another action under the skills’ control.
However, this change will interact with the current assump-
tion that conceptual inferences are removed from short-term
memory when their supporting perceptions disappear. One
response would be to retain inferred beliefs (e.g., that a lane
is clear) across cycles but associate with them expected du-
rations, which in turn would influence attentional decisions.

Another omission relates to ICARUS’ reliance on pre-
defined concepts to guide its skill learning. Clearly, hu-
mans can also acquire new concepts, and we should incor-
porate this ability in future versions of the architecture. One
promising approach involves defining a conjunctive concept
for the start conditions of each learned skill. This concept
would be linked to the goal that the skill achieves, which
suggests a different path to guiding attention and conceptual
inference. Later concepts would build upon ones created
earlier, producing another instance of cumulative learning.
In some cases, these definitions would be recursive to han-
dle situations that involve variable numbers of objects.

Finally, ICARUS lacks the key human ability to store its
previous experiences in an episodic memory and retrieve
them later. However, we have noted that our framework
requires that elements in short-term memory correspond to
instances of generic concepts or skills. This suggests we
can model experiential memory by extending these struc-
tures to include time markers that indicate when they en-
tered and left the short-term stores, with elements being in-
dexed through the generic structures of which they are in-
stances. Jones and Langley (1995) report one method for
analogical retrieval that we might adapt to operate over such
episodic traces.

5. Concluding Remarks

In closing, we should review the distinctive characteristics
of our theoretical framework and the results to date. Unlike
most cognitive architectures, ICARUS is concerned centrally
with intelligent behavior in physical domains. Processes for
perception and action are more basic than ones for inference

and problem solving, though they interact tightly. The ar-
chitecture separates concepts from skills, which are stored
in distinct but connected long-term memories, and carries
this dichotomy over to short-term memories, which contain
instances of concepts (beliefs and goals) and skills (inten-
tions). Both conceptual and skill memory are hierarchical,
with the former directing bottom-up inference and the latter
structuring top-down selection of actions. Impasses in exe-
cution lead to means-ends problem solving, whereas traces
of successful solutions are stored as generalized skills in a
cumulative manner.

Our experimental studies of ICARUS’ behavior remain in
their early stages. Nevertheless, we have shown that the ar-
chitecture supports an interesting mixture of cognition, per-
ception, and action in a variety of domains, including in-city
driving, which provide encouraging evidence of generality.
We have also shown that, in three of these domains, prob-
lem solving leads the system to acquire hierarchical skills
in a manner that builds on previous learning. We identi-
fied some limitations of the current architecture, but these
suggested in turn some natural extensions which will let
ICARUS cover a still broader range of intelligent behavior
that, we believe, will prove difficult to achieve in traditional
architectural frameworks.

Acknowledgements

This research was funded in part by Grant HR0011-04-
1-0008 from DARPA IPTO and by Grant IIS-0335353
from the U.S. National Science Foundation. Nima Asghar-
beygi, Dongkyu Choi, Kirstin Cummings, Negin Nejati,
Seth Rogers, and Jiang Xuan have contributed to develop-
ment the ICARUS architecture.

References

Albus, J. S., & Meystel, A. M. (2001). Engineering of mind:
An introduction to the science of intelligent systems. New
York: John Wiley.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:
Lawrence Erlbaum.

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller,
D., & Slack, M. (1997). Experiences with an architecture
for intelligent, reactive agents. Journal of Experimental
and Theoretical Artificial Intelligence, 9, 237–256.

Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro,
D. (2004). An architecture for persistent reactive behav-
ior. Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multi Agent Systems
(pp. 988–995). New York: ACM Press.

Choi, D., & Langley, P. (in press). Learning teleoreac-
tive logic programs from problem solving. Proceedings
of the Fifteenth International Conference on Inductive
Logic Programming. Bonn, Germany: Springer.

7



Freed, M. (1998). Managing multiple tasks in complex, dy-
namic environments. Proceedings of the National Con-
ference on Artificial Intelligence (pp. 921–927). Madi-
son, WI: AAAI Press.

Georgeff, M., Lansky, A., & Bessiere, P. (1985). A proce-
dural logic. Proceedings of the Ninth International Joint
Conference on Artificial Intelligence (pp. 516–523). Los
Angeles: Morgan Kaufmann.

Howe, A. E. (1995). Improving the reliability of AI plan-
ning systems by analyzing their failure recovery. IEEE
Transactions on Knowledge and Data Engineering, 7,
14–25.

Johnson-Laird, P. N. (1989). Mental models. In M. I. Pos-
ner (Ed.), Foundations of cognitive science. Cambridge,
MA: MIT Press.

Jones, R., & Langley, P. (1995). Retrieval and learning in
analogical problem solving. Proceedings of the Seven-
teenth Annual Conference of the Cognitive Science Soci-
ety (pp. 466–471). Pittsburgh: Lawrence Erlbaum.

Kieras, D., & Meyer, D. E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12, 391–438.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial Intelli-
gence, 33, 1–64.

Langley, P., & Cummings, K. (2004). Hierarchical skills
and cognitive architectures. Proceedings of the Twenty-
Sixth Annual Conference of the Cognitive Science Society
(pp. 779–784). Chicago, IL.

Miller, C. S. & Laird, J. E. (1996). Accounting for graded
performance within a discrete search framework. Cogni-
tive Science, 20, 499–537.

Minton, S. N. (1990). Quantitative results concerning the
utility of explanation-based learning. Artificial Intelli-
gence, 42, 363–391.

Newell, A. (1980). Reasoning, problem solving, and de-
cision processes: The problem space hypothesis. In
R. Nickerson (Ed.), Attention and performance (Vol. 8).
Hillsdale, NJ: Lawrence Erlbaum.

Newell, A. (1990). Unified theories of cognition. Cam-
bridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1972). Human problem solv-
ing. Englewood Cliffs, NJ: Prentice-Hall.

Newell, A., & Simon, H. A. (1976). Computer science as
empirical enquiry: Symbols and search. Communica-
tions of the ACM, 19, 113–126.

Nilsson, N. (1994). Teleoreactive programs for agent con-
trol. Journal of Artificial Intelligence Research, 1, 139–
158.

Rao, A. S. & Georgeff, M. P. (1992). An abstract architec-
ture for rational agents. Proceedings of the Third Inter-
national Conference on Principles of Knowledge Repre-
sentation and Reasoning (pp. 439–449). San Mateo, CA:
Morgan Kaufmann.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit
skills to explicit knowledge: A bottom-up model of skill
learning. Cognitive Science, 25, 203–244.

VanLehn, K. (1990). Mind bugs: The origins of procedural
misconceptions. Cambridge, MA: MIT Press.

Veloso, M. M., & Carbonell, J. G. (1993). Derivational
analogy in PRODIGY: Automating case acquisition, stor-
age, and utilization. Machine Learning, 10, 249–278.

8


